On a characteristic of the first eigenvalue of the Dirac operator on compact spin symmetric spaces with a Kähler or Quaternion-Kähler structure

نویسندگان

  • Jean-Louis Milhorat
  • JEAN-LOUIS MILHORAT
چکیده

It is shown that on a compact spin symmetric space with a Kähler or Quaternion-Kähler structure, the first eigenvalue of the Dirac operator is linked to a “lowest” action of the holonomy, given by the fiberwise action on spinors of the canonical forms characterized by this holonomy. The result is also verified for the symmetric space F4/Spin9, proving that it is valid for all the “possible” holonomies in the Berger’s list occurring in that context. The proof is based on a characterization of the first eigenvalue of the Dirac operator given in [Mil05] and [Mil06]. By the way, we review an incorrect statement in the proof of the first lemma in [Mil05].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A formula for the First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces

Let G/K be a simply connected spin compact inner irreducible symmetric space, endowed with the metric induced by the Killing form of G sign-changed. We give a formula for the square of the first eigenvalue of the Dirac operator in terms of a root system of G. As an example of application, we give the list of the first eigenvalues for the spin compact irreducible symmetric spaces endowed with a ...

متن کامل

The First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces

We give a formula for the first eigenvalue of the Dirac operator acting on spinor fields of a spin compact irreducible symmetric space G/K.

متن کامل

A universal lower bound for the first eigenvalue of the Dirac operator on quaternionic Kähler manifolds

A universal lower bound for the first positive eigenvalue of the Dirac operator on a compact quaternionic Kähler manifold M of positive scalar curvature is calculated. It is shown that it is equal to the first positive eigenvalue on the quaternionic projective space. For this, the horizontal tangent bundle on the canonical SO(3)-bundle over M is equipped with a hyperkählerian structure and the ...

متن کامل

Operator on Quaternion-Kähler Foliations

In this paper, we give an optimal lower bound for the eigenvalues of the basic Dirac operator on a quaternion-Kähler foliations. The limiting case is characterized by the existence of quaternion-Kähler Killing spinors. We end this paper by giving some examples.

متن کامل

Vafa-witten Estimates for Compact Symmetric Spaces

We give an optimal upper bound for the first eigenvalue of the untwisted Dirac operator on a compact symmetric space G/H with rkG− rkH ≤ 1 with respect to arbitrary Riemannian metrics. We also prove a rigidity statement. Herzlich gave an optimal upper bound for the lowest eigenvalue of the Dirac operator on spheres with arbitrary Riemannian metrics in [9] using a method developed by Vafa and Wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016